Telegram Group & Telegram Channel
🚀 Как ускорить Python-код для ресурсоёмких задач

При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.

🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.

1️⃣ Используйте GPU с включённым memory growth

По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)


2️⃣ Оптимизируйте загрузку данных с `tf.data`

Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.

Пример:
dataset = tf.data.Dataset.from_generator(
data_generator,
output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns}
).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)


📎 Вывод:
GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6445
Create:
Last Update:

🚀 Как ускорить Python-код для ресурсоёмких задач

При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.

🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.

1️⃣ Используйте GPU с включённым memory growth

По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)


2️⃣ Оптимизируйте загрузку данных с `tf.data`

Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.

Пример:
dataset = tf.data.Dataset.from_generator(
data_generator,
output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns}
).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)


📎 Вывод:
GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6445

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from ye


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA